

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Studies on the Formation of β -Cyclodextrin/Alkylcobaloxime Inclusion Complexes by Using NMR Methods

Laibin Luo^a; Yu Chen^a; Huilan Chen^a; Wenxia Tang^a

^a Department of Chemistry, Coordination State Key Laboratory, Nanjing University, Nanjing, P. R. China

To cite this Article Luo, Laibin , Chen, Yu , Chen, Huilan and Tang, Wenxia(1996) 'Studies on the Formation of β -Cyclodextrin/Alkylcobaloxime Inclusion Complexes by Using NMR Methods', Spectroscopy Letters, 29: 3, 449 — 464

To link to this Article: DOI: 10.1080/00387019608006663

URL: <http://dx.doi.org/10.1080/00387019608006663>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**STUDIES ON THE FORMATION OF β -CYCLODEXTRIN/
ALKYLCOBALOXIME INCLUSION COMPLEXES BY USING NMR METHODS**

Key Words: β -Cyclodextrin, Alkylcobaloxime, NMR

Laibin Luo Yu Chen Huilan Chen* Wenxia Tang

(Department of Chemistry, Coordination State Key
Laboratory, Nanjing University, Nanjing, 210093,
P.R.China)

ABSTRACT

It has been established that alkylcobaloxime ($R=i-C_4H_9$, $n-C_4H_9$, $n-C_5H_{11}$, $c-C_6H_{11}$, $PhCH_2$) and β -cyclodextrin form a kind of 1:1 inclusion complexes in aqueous solution by 1H NMR spectroscopy. K_a and $-\Delta G^\circ$ were calculated according to chemical shift changes of different probe protons. The stability constant (K_a) has been found increasing in the order: $PhCH_2 > n-C_5H_{11} > c-C_6H_{11} > i-C_4H_9 > n-C_4H_9$.

Cyclodextrins(CDs) are known to provide hydrophobic environment in aqueous solution and are capable to include a variety of lipophilic guests in their cavities⁽¹⁾. Recently they have been proposed as enzyme models for being due to their ability to show regiospecificity and stereospecificity with respect to the substrate and to the product during catalytic processing⁽²⁾.

Coenzyme B₁₂, i. e. 5'-deoxyadenosylcobalamin, which acts as a cofactor to take part in over a dozen inner-molecular arrangement reactions, is a very important organometallic complex in nature⁽³⁾. In the past three decades, a significant effort has been devoted to the study on the factors that influence the Co-C bond homolysis, which is a key step in catalytic cycles. Unfortunately the question of exactly how enzymes weaken Co-C bond and accelerate the rate of the Co-C bond homolysis by a factor of 10¹³ remains unanswered⁽⁴⁾. Alkylcobaloxime which contains the Co(DH)₂ moiety, where DH is dimethylglyoxime, is one kind of the most extensively studied coenzyme B₁₂ model⁽⁵⁾. Since inspection of space-filling molecular models revealed that the R groups of cobaloximes may fit snugly into the cavity of β -CD, we were encouraged to investigate the binding of cobaloximes(H₂OCO(DH)₂R, R=i-C₄H₉, n-C₄H₉, n-C₅H₁₁, c-C₆H₁₁, PhCH₂) with β -CD in aqueous solution in order to realize the extent of the stability of formation the inclusion

complexes and the effect of environment on Co-C bond properties of cobaloxime.

Equimolar β -CD and cobaloxime were dissolved in D_2O at 30-40°C. A series of solutions of known concentrations (10^{-2} - $10^{-4}M$) were prepared by dilution of original stock solution. After recording the spectra at 25°C, the chemical shifts observed for the resonance of the probe protons were ascertained.

The spectra of β -CD, $H_2OCo(DH)_2i-C_4H_9$ and β -CD/ $H_2OCo(DH)_2i-C_4H_9$ were shown in Fig.1. There were significant shift of some signals comparing the spectra of inclusion complexes with those of hostes or guestes (see Fig.1 and appendix).

(a) For β -CD, ~0.1ppm upfield shifts were induced for the H-3 and H-5, which are located within the cavity of β -CD. While the chemiacl shifts of the resonances of H-1,H-2,H-4, which are on the outer surface of the β -CD torus, and H-6, which is at the narrow opening of β -CD were unaffected.

(b) For planar ligand of $H_2OCo(DH)_2R$, the singlet of resonance of the methyl groups of oxime split into doublet. Moreover,they move down field by about 0.05ppm and 0.1ppm, respectively, indicating the unequivalent of the methyls.

(c) For R groups of $H_2OCo(DH)_2R$, the signals were shifted to higher frequency, espically for α -H at carbon connected with cobalt directly.

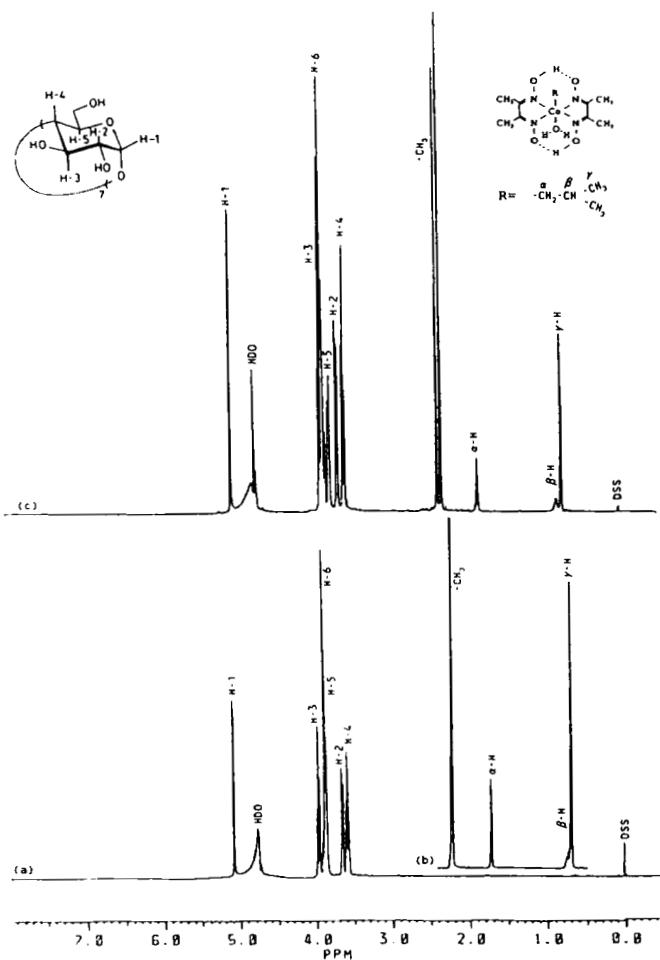
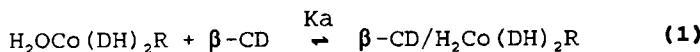



FIG. 1 The 500MHz ^1H NMR spectra of (a) β -CD (b) $\text{H}_2\text{OCO}(\text{DH})_2\text{i-C}_4\text{H}_9$ (c) β -CD/ $\text{H}_2\text{OCO}(\text{DH})_2\text{i-C}_4\text{H}_9$ in D_2O at concentration of approximately $1.10 \times 10^{-2}\text{M}$

The results may indicate that R groups of $\text{H}_2\text{OCO}(\text{DH})_2\text{R}$ were included within the cavities and planars involving Co atom and oxime ligand were placed near wider openings of β -CD. Evenmore, it was probably suggested that the electron density of the inner protons of β -CD increased and the electron density at equatorial ligand and Co atom decreased after inclusion.

Based on the fact that chemical shifts observed are different with changing the concentration of the 1:1 adducts, ^1H NMR spectroscopy is useful to quantitatively determine the stability constant of formation of the inclusion complexes ⁶. Equation (3) could be used for data analysis. Where the Δ 's are the differences between the observed chemical shifts of the probe protons and those for the same protons in free components, the Δ_0 's are the limiting chemical shifts, in which 1:1 adducts are assumed fully formed, and the x are the concentrations of 1:1 adducts.

$$K_a = \frac{[\beta\text{-CD}/\text{H}_2\text{OCO}(\text{DH})_2\text{R}]}{[\text{H}_2\text{OCO}(\text{DH})_2\text{R}] [\beta\text{-CD}]} \quad (2)$$

$$\Delta = \Delta_0 - (\Delta/x)^{1/2} (\Delta_0/K_a)^{1/2} \quad (3)$$

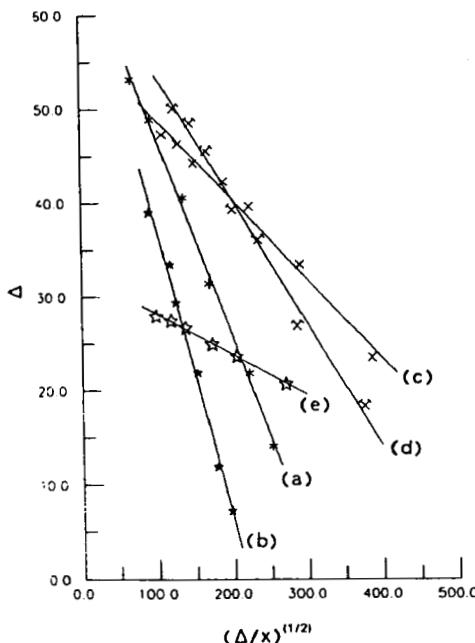


FIG. 2 Plots of Δ against $(\Delta/x)^{(1/2)}$ for $-\text{CH}_3$ at dimethylglyoxime in the quantitative ^1H NMR experiment
 (a) $\text{H}_2\text{OCO}(\text{DH})_2\text{i-C}_4\text{H}_9$ (b) $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_4\text{H}_9$ (c) $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_5\text{H}_{11}$
 (d) $\text{H}_2\text{OCO}(\text{DH})_2\text{c-C}_6\text{H}_{11}$ (e) $\text{H}_2\text{OCO}(\text{DH})_2\text{PhCH}_2$

In this paper, H-5(at β -CD), $-\text{CH}_3$ (at oxime), α -H(at carbon connected with cobalt directly) were chosen as probe protons. All plots of Δ against $(\Delta/x)^{(1/2)}$ gave good straight lines as required by equation(3). Plots in which $-\text{CH}_3$ was probe protons were shown in Fig. 2. LogK_a , Δ_0 and $-\Delta G^\circ$ were calculated and listed in Table.

Values of LogK_a and $-\Delta G^\circ$ are in acceptable agreement with each other for all β -CD/cobaloxime adducts according

TABLE

Data of LogKa, $-\Delta G^\circ$ (KJ/mol), Δ_0 (Hz) for Inclusion Compound Formation Involving $H_2OCo(DH)_2R$ and β -CD

R	H-5			-CH ₃			α -H		
	LogKa	$-\Delta G^\circ$	Δ_0	LogKa	$-\Delta G^\circ$	Δ_0	LogKa	$-\Delta G^\circ$	Δ_0
i-C ₄ H ₉	3.07	17.5	80.6	3.18	18.1	68.6	3.13	17.9	66.2
n-C ₄ H ₉	2.70	15.4	106.0	2.85	16.2	68.8	2.87	16.4	74.3
n-C ₅ H ₁₁	3.78	21.6	96.1	3.90	22.3	57.5	3.93	22.5	47.3
c-C ₆ H ₁₁	3.58	20.5	67.9	3.58	20.5	67.9			
PhCH ₂	4.12	23.5	36.9	4.24	24.2	32.5	4.20	24.0	162.2

to different probe protons. Moreover we found that the ability for formation of β -CD/ $H_2OCo(DH)_2R$ adducts was $PhCH_2 > n-C_5H_{11} > c-C_6H_{11} > i-C_4H_9 > n-C_4H_9$. It probably revealed that the bigger size of the R groups and the deeper inclusion of the groups into the β -CD cavity enhanced hydrophobic and Vander Waals interactions⁷.

Single crystals suitable for X-ray crystallography have been achieved. The work are in progress.

ACKNOWLEDGEMENT

This work is supported by National Science Foundation of China.

REFERENCES

(1) Bender M.L. and Komiya M., *Cyclodextrin Chemistry*, Springer Verlag: Berlin 1978.

(2) (a) Saenger W., *Angew. Chem., Int. Ed. Engl.*, 1980; 19: 344.
(b) Breslow R., *Chem. in Britain*, 1983; Feb.: 126.
(c) Trainor G.L. and Breslow R., *J. Am. Chem. Soc.*, 1981; 103: 154.
(d) Breslow R., Czarniecki M.F., Emert J. and Hamaguchi H., *J. Am. Chem. Soc.*, 1980; 102: 762.

(3) Dolphin D., Ed., *B₁₂*, Wiley: New York, 1982: Vol.2.

(4) (a) Halpern J., *Science*, 1985; 227: 869.
(b) Finke R.G., Schirald D.A., Mayer B., *J. Coord. Chem. Rev.*, 1984; 54: 1.
(c) Hay B.P. and Finke R.G., *J. Am. Chem. Soc.*, 1987; 109: 8012.

(5) (a) Schrauzer G.N., *Acc. Chem. Res.*, 1968; 1(4): 97.
(b) BrescianiPahor N., Forcolin M., Marzinic L.M., Randaccio L., Summers M.F., Toscano P.J., *J. Coord. Chem. Rev.*, 1985; 63: 1.

(6) Alston D.R., Lilley T.H. and Stoddart J.F., *J. Chem. Soc., Chem. Commun.*, 1985; 1600.

(7) Eftink M.R., Andy M.L., Bystrom K., Perlmutter H.D. and Kristol D.S., *J. Am. Chem. Soc.*, 1989; 111: 6765.

RECEIVED: October 2, 1995
ACCEPTED: November 8, 1995

APPENDIX

Table 1 Data of quantitative analysising inclusion compound formation involving $\text{H}_2\text{OCO}(\text{DH})_2\text{i-C}_6\text{H}_9$ and β -CD

Concen.	H_3		CH_3		$\alpha\text{-H}$	
	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$
1.10×10^{-3}	61.28	74.59	53.11	69.44	50.16	67.49
5.51×10^{-3}	54.04	99.06	48.88	94.22	46.92	92.30
2.20×10^{-3}	44.05	141.41	40.57	135.72	38.20	131.70
1.10×10^{-4}	34.50	176.99	31.46	169.00	29.56	163.83
4.41×10^{-4}	22.05	223.73	21.86	222.74	18.99	207.65
2.20×10^{-4}	14.16	253.55	14.09	252.88	13.12	244.06

* C:M Δ :HzTable 2 Data of quantitative analysising inclusion compound formation involving $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_6\text{H}_9$ and β -CD

Concen.	H_3		CH_3		$\alpha\text{-H}$	
	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$
4.67×10^{-3}	54.84	108.38	38.99	91.38	42.68	95.60
2.43×10^{-3}	44.55	135.45	33.47	117.40	37.02	123.47
1.87×10^{-3}	40.60	147.43	29.36	125.39	32.59	132.10
9.34×10^{-4}	26.55	168.61	21.87	153.03	24.23	161.06
3.74×10^{-4}	14.94	199.95	11.90	178.48	13.07	187.08
1.88×10^{-4}	8.31	210.99	7.21	196.40	8.28	210.61

* C:M Δ :HzTable 3 Data of quantitative analysising inclusion compound formation involving $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_5\text{H}_{11}$ and β -CD

Concen.	H_3		CH_3		$\alpha\text{-H}$	
	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$
3.93×10^{-3}	78.60	141.43	47.29	109.71	39.47	100.22
2.75×10^{-3}	74.30	164.35	46.30	129.74	38.66	118.55
1.96×10^{-3}	72.25	191.76	44.26	150.09	36.13	135.61
1.18×10^{-3}	66.32	237.20	42.31	189.44	35.22	172.86
7.86×10^{-4}	60.86	278.29	39.62	224.54	32.72	204.06
3.93×10^{-4}	52.09	364.09	33.48	291.92	28.26	268.18
1.57×10^{-4}	35.38	474.44	23.52	386.83	19.97	356.44

* C:M Δ :Hz

Table 4 Data of quantitative analysising inclusion compound formation involving $\text{H}_2\text{OCo}(\text{DH})_2\text{C}_6\text{H}_{11}$ and $\beta\text{-CD}$

Concen.	H_5		CH_3		$\alpha\text{-H}^*$	
	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$
3.26×10^{-3}	51.39	125.56	50.17	124.06		
2.28×10^{-3}	47.71	144.60	48.62	145.97		
1.63×10^{-3}	45.12	166.38	45.63	167.33		
9.78×10^{-4}	41.03	204.84	39.40	200.72		
6.52×10^{-4}	36.93	238.01	36.23	235.72		
3.26×10^{-4}	29.32	299.90	27.01	287.87		
1.30×10^{-4}	17.62	367.60	18.45	376.10		

* C:M Δ :Hz

#: It partly overlapped with the peak of $-\text{CH}_3$ at dimethylglyoxime

Table 5 Data of quantitative analysising inclusion compound formation involving $\text{H}_2\text{OCo}(\text{DH})_2\text{PhCH}_3$ and $\beta\text{-CD}$

Concen.	H_5		CH_3		$\alpha\text{-H}$	
	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$	Δ	$(\Delta/\text{C})^{(1/2)}$
2.81×10^{-3}	31.68	106.12	27.99	99.74	138.10	221.56
1.97×10^{-3}	30.21	123.84	27.51	118.18	135.20	262.01
1.41×10^{-3}	29.05	143.70	26.74	137.87	132.61	307.03
8.44×10^{-4}	27.38	180.11	25.02	172.17	124.86	384.62
5.63×10^{-4}	25.77	214.02	23.71	205.27	117.11	456.20
2.81×10^{-4}	22.13	280.43	20.74	271.48	100.50	597.65

* C:M Δ :Hz

Table 6 Data of chemical shifts of $\text{H}_2\text{OCO}(\text{DH})_2\text{R}$, $\beta\text{-CD}$
1:1 $\beta\text{-CD}/\text{H}_2\text{OCO}(\text{DH})_2\text{R}$ (ppm)

Host	R=i-C ₄ H ₉		R=n-C ₄ H ₉	
	Guest	Complex	Guest	Complex
R α -H	1.72	1.82	1.76	1.85
β -H	0.73	0.80	1.16	1.17
γ -H	0.69	0.73	0.78	0.78
δ -H			0.77	0.77
CH ₃	2.24	2.34	2.23	2.31
		2.29		2.27
$\beta\text{-CD}$	H-1	5.06	5.05	5.06
	H-2	3.64	3.64	3.64
	H-3	3.96	3.88	3.90
	H-4	3.58	3.56	3.57
	H-5	3.86	3.74	3.75
	H-6	3.87	3.87	3.86

* : $[\beta\text{-CD}/\text{H}_2\text{OCO}(\text{DH})_2\text{i-C}_4\text{H}_9] = \sim 1.1 \times 10^{-2}\text{M}$
 $[\beta\text{-CD}/\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_4\text{H}_9] = \sim 4.67 \times 10^{-3}\text{M}$

	R=n-C ₆ H ₁₁		R=c-C ₆ H ₁₁		R=PhCH ₃	
	Guest	Complex	Guest	Complex	Guest	Complex
R α -H	1.75	1.83	2.29	2.38	2.92	3.19 3.05
β -H	1.20	1.20	1.40	1.54 1.48		
γ -H	1.14	1.20	1.27 1.08	1.28 0.91	6.99	7.17
δ -H	0.80	0.84	0.84	0.88	7.08	7.11
ϵ -H	0.79	0.73			7.32	7.22
CH ₃	2.23	2.32 2.28	2.24	2.34 2.30	2.10	2.16 2.10
$\beta\text{-CD}$	H-1	5.05	5.05	5.08		
	H-2	3.64	3.66	3.66		
	H-3	3.88	3.88	3.98		
	H-4	3.56	3.55	3.60		
	H-5	3.70	3.76	3.79		
	H-6	3.87	3.85	3.86		

* : $[\beta\text{-CD}/\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_6\text{H}_{11}] = \sim 3.93 \times 10^{-3}\text{M}$
 $[\beta\text{-CD}/\text{H}_2\text{OCO}(\text{DH})_2\text{c-C}_6\text{H}_{11}] = \sim 3.26 \times 10^{-3}\text{M}$
 $[\beta\text{-CD}/\text{H}_2\text{OCO}(\text{DH})_2\text{PhCH}_3] = \sim 2.81 \times 10^{-3}\text{M}$

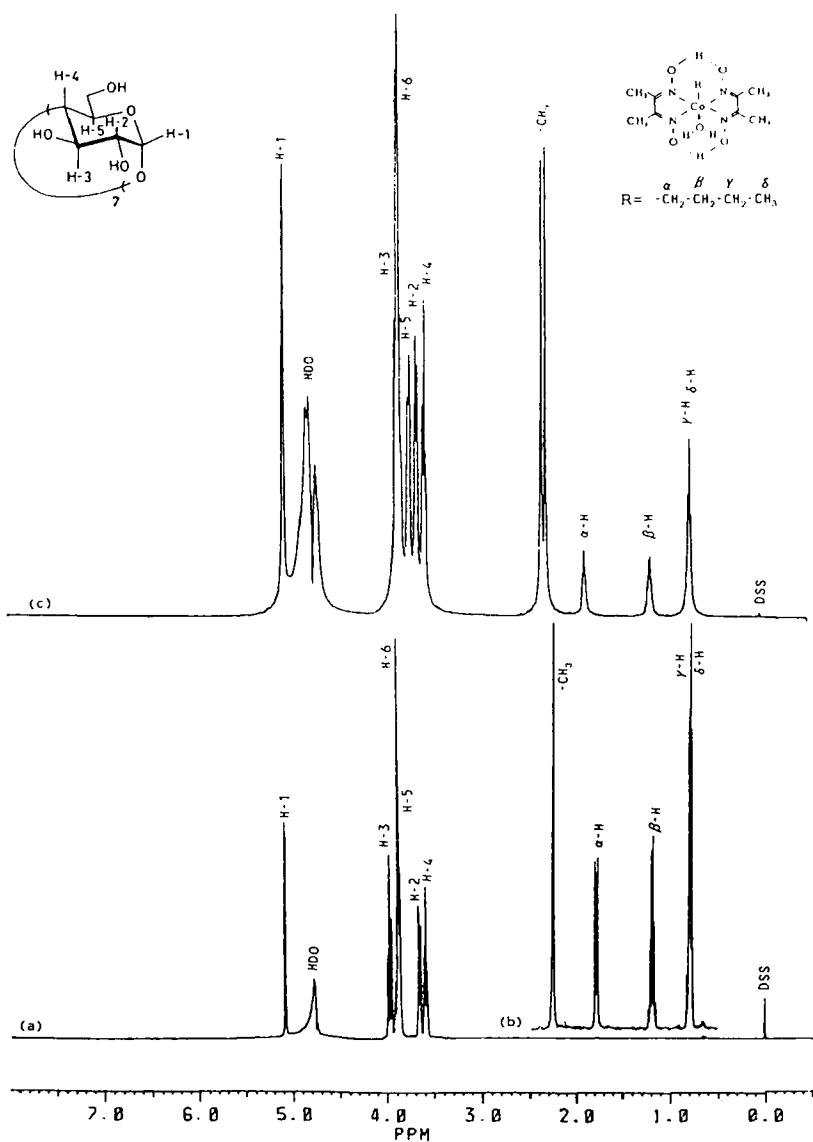


Fig. 1 The 500MHz ^1H NMR spectra of (a) β -CD (b) $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_4\text{H}_9$ (c) β -CD/ $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_4\text{H}_9$ in D_2O at concentration of approximately $4.67 \times 10^{-3} \text{ M}$

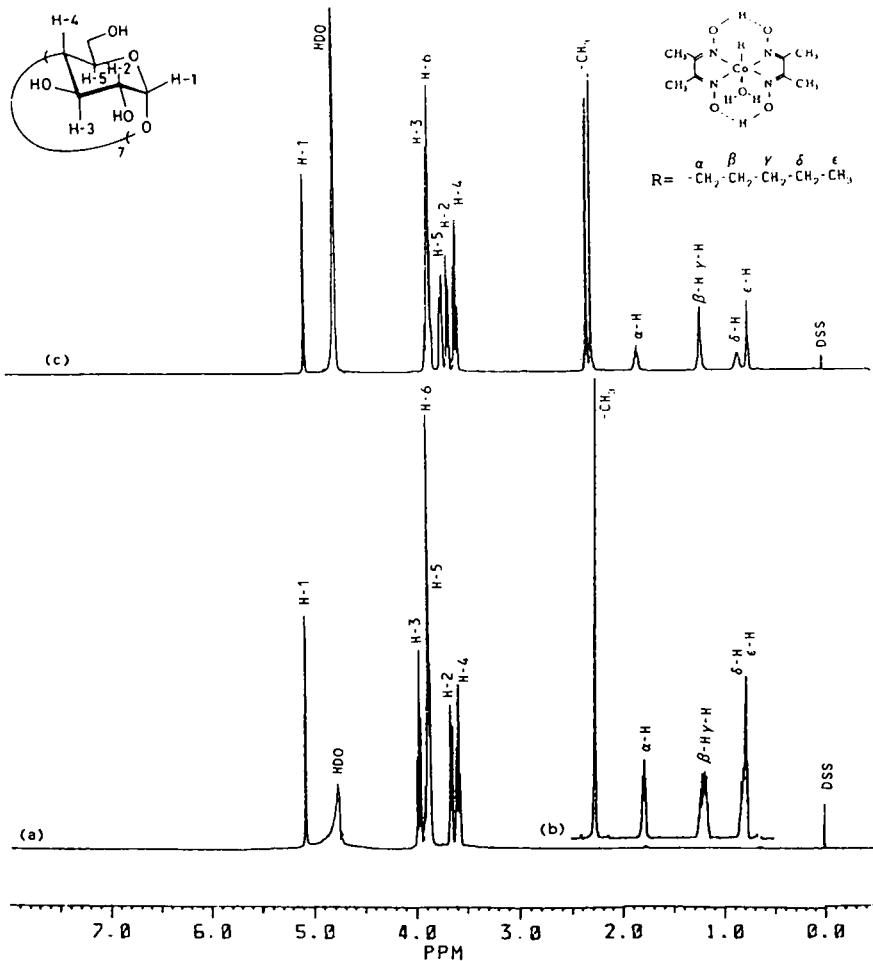


Fig. 2 The 500MHz ^1H NMR spectra of (a) β -CD (b) $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_5\text{H}_{11}$ (c) β -CD/ $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_5\text{H}_{11}$ in D_2O at concentration of approximately $3.93 \times 10^{-3} \text{ M}$

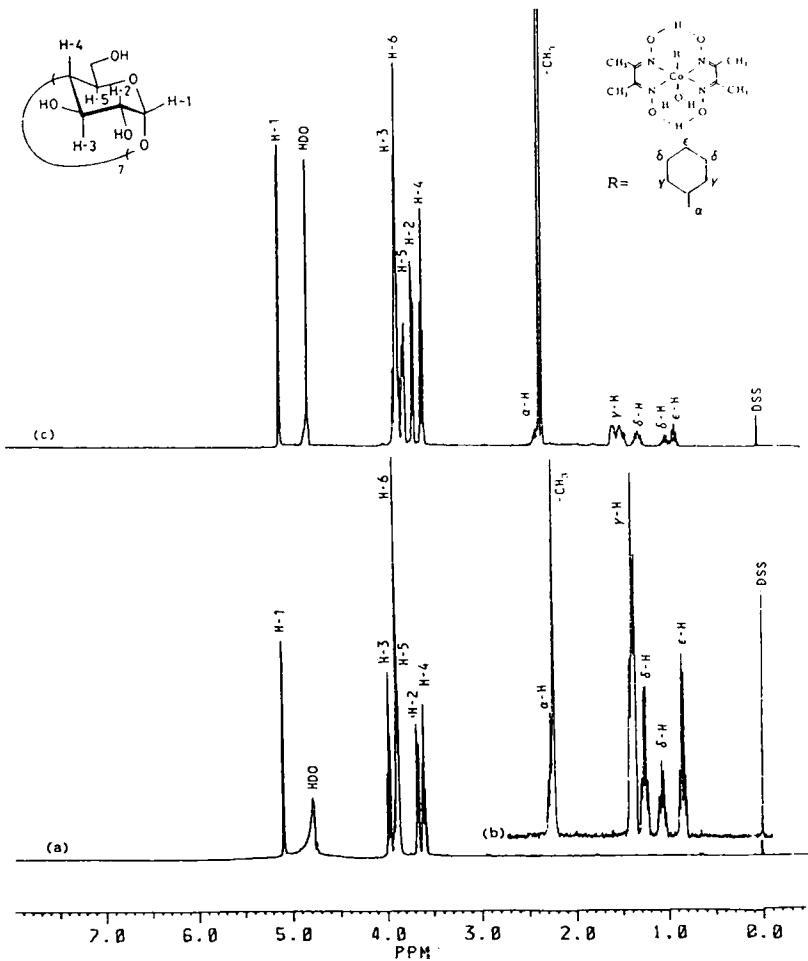


Fig. 3 The 500MHz ^1H NMR spectra of (a) β -CD (b) $\text{H}_2\text{OCO}(\text{DH})_2\text{C-C}_6\text{H}_{11}$ (c) β -CD/ $\text{H}_2\text{OCO}(\text{DH})_2\text{C-C}_6\text{H}_{11}$ in D_2O at concentration of approximately $3.26 \times 10^{-3} \text{ M}$

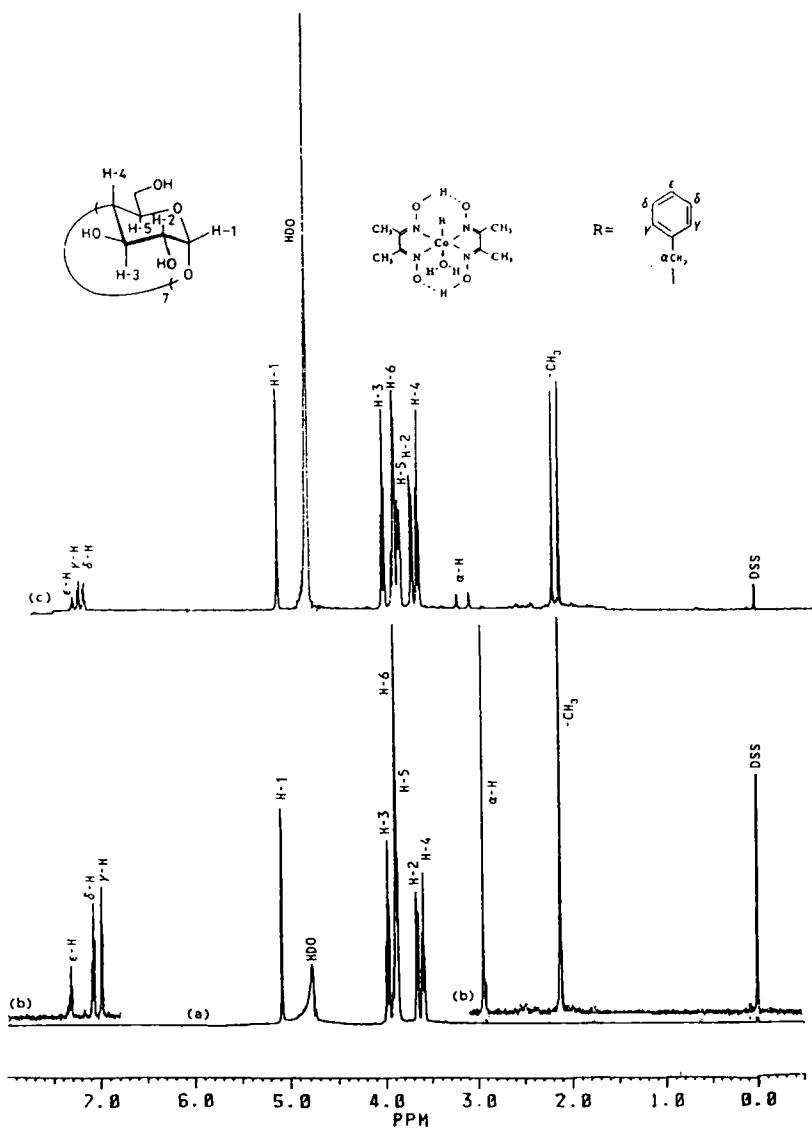


Fig. 4 The 500MHz ^1H NMR spectra of (a) β -CD (b) $\text{H}_2\text{OCO}(\text{DH})_2\text{PhCH}_2$ (c) β -CD/ $\text{H}_2\text{OCO}(\text{DH})_2\text{PhCH}_2$ in D_2O at concentration of approximately $2.81 \times 10^{-3}\text{M}$

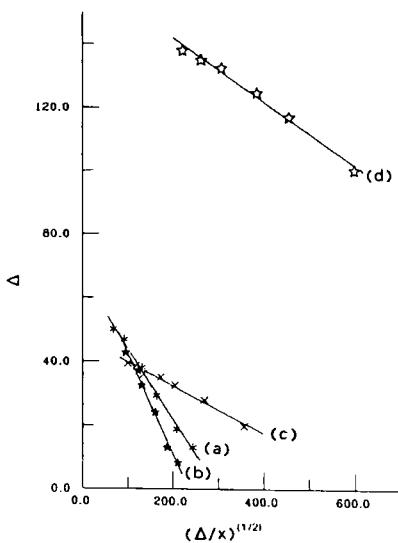


Fig. 5 Plots of Δ against $(\Delta/x)^{(1/2)}$ for α -H at R groups in the quantitative ^1H NMR experiment
 (a) $\text{H}_2\text{OCO}(\text{DH})_2\text{i-C}_4\text{H}_9$ (b) $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_4\text{H}_9$ (c) $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_5\text{H}_{11}$
 (d) $\text{H}_2\text{OCO}(\text{DH})_2\text{PhCH}_2$

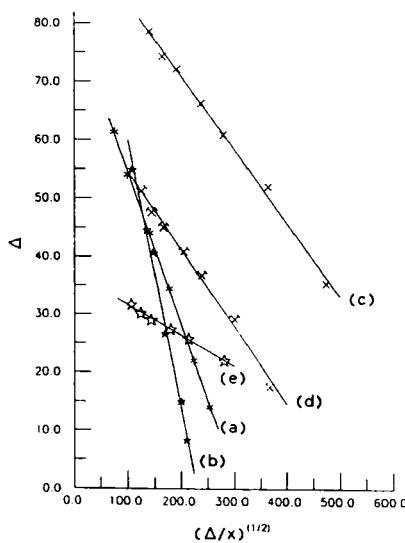


Fig. 6 Plots of Δ against $(\Delta/x)^{(1/2)}$ for H-5 at β -CD in the quantitative ^1H NMR experiment
 (a) $\text{H}_2\text{OCO}(\text{DH})_2\text{i-C}_4\text{H}_9$ (b) $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_4\text{H}_9$ (c) $\text{H}_2\text{OCO}(\text{DH})_2\text{n-C}_5\text{H}_{11}$
 (d) $\text{H}_2\text{OCO}(\text{DH})_2\text{C-C}_6\text{H}_{11}$ (e) $\text{H}_2\text{OCO}(\text{DH})_2\text{PhCH}_2$